9급 지방직 공무원 서울시 통신이론 필기 기출문제복원 (2018-06-23)

9급 지방직 공무원 서울시 통신이론
(2018-06-23 기출문제)

목록

1. 0[dBm]의 전력을 갖는 신호가 손실이 30[dB]인 시스템을 통과하는 경우, 출력신호의 크기는?

  1. 0[mW]
  2. 0.1[mW]
  3. 0.01[mW]
  4. 0.001[mW]
(정답률: 59%)
  • 손실이 30[dB]이므로 입력신호의 전력은 출력신호의 전력의 10^3배가 됩니다. 따라서, 출력신호의 전력은 0[dBm] - 30[dB] = -30[dBm]이 됩니다. 이를 밀리와트(mW) 단위로 변환하면, 10^(-30/10) = 0.001[mW]가 됩니다. 따라서, 정답은 "0.001[mW]"입니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

2. 신호 x(t)=cosw0t+sin22w0t의 복소 지수 푸리에 급수(Fourier series)로 가장 옳지 않은 것은? (단, 여기서 이다.)

  1. X1=1/2
  2. X2=0
  3. X3=0
  4. X4=1/4
(정답률: 30%)
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

3. s1=(101011)과 s2=(001101) 간의 해밍 거리는?

  1. 2
  2. 3
  3. 4
  4. 5
(정답률: 92%)
  • 해밍 거리는 두 문자열 간의 다른 비트 수를 나타내는 지표입니다. s1과 s2를 비교해보면, 첫 번째, 두 번째, 네 번째 비트가 서로 다릅니다. 따라서 해밍 거리는 3입니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

4. 어느 해 서울특별시 9급 통신이론 시험의 점수를 평균 ax=80점과 표준편차 σx=10점을 가진 Gauss 랜덤변수 X라 가정할 때, 시험 점수가 90점보다 더 높을 확률로 가장 옳은 것은? (다음 표는 에서 x의 변화에 대한 F(x) 값이다.)

  1. 약 30.8%
  2. 약 15.9%
  3. 약 6.7%
  4. 약 2.3%
(정답률: 65%)
  • 시험 점수가 90점보다 높을 확률은 P(X>90)이다. 이를 구하기 위해 표준정규분포를 이용하여 계산한다.

    Z = (X - ax) / σx = (90 - 80) / 10 = 1

    따라서, P(X>90) = P(Z>1)이다. 이때, Z가 1보다 큰 확률은 표준정규분포표에서 0.1587이다. 따라서, 시험 점수가 90점보다 높을 확률은 약 15.9%이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

5. <보기>와 같이 폭이 τ이고 높이가 A인 구형함수로 이루어진 파형의 푸리에 변환(Fourier Transform)으로 가장 옳은 것은? (단, 이고 이다.)

(정답률: 58%)
  • 주어진 파형은 구형함수로 이루어져 있으므로, 푸리에 변환 결과는 디랙 델타 함수의 합으로 나타납니다. 따라서, 주어진 보기 중에서 디랙 델타 함수의 합으로 나타낸 ""이 옳은 답입니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

6. 순회 잔여 검사 부호(Cyclic Redundancy Check(CRC) Code)에서 메시지 D=1010001101이고 나눗수 P=110101 일 때 전송되는 부호 T로 가장 옳은 것은?

  1. 101000110101110
  2. 101000110111001
  3. 101000110101101
  4. 101000110110110
(정답률: 15%)
  • CRC 코드에서는 메시지 D와 나눗수 P를 이용하여 나머지 연산을 수행하고, 이 나머지를 부호 T에 추가하여 전송합니다. 이때, 나머지 연산을 수행하는 방법은 다음과 같습니다.

    1. 메시지 D의 끝에 P-1개의 0을 추가합니다.
    (위의 예시에서는 P=110101 이므로, 메시지 D의 끝에 5개의 0을 추가합니다.)

    2. 이어서 나눗수 P로 나누어 나머지를 구합니다.
    (위의 예시에서는 D=101000110100000, P=110101 이므로, 나머지는 1000입니다.)

    3. 이 나머지를 부호 T의 끝에 추가합니다.
    (위의 예시에서는 T=10100011011000 입니다.)

    따라서, 보기 중에서 부호 T가 "101000110101110" 인 것이 옳습니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

7. 메시지 신호 m(t)=Acosωmt를 주파수 변조하였을 때 변조된 반송파의 위상 편이로 가장 옳은 것은? (단, kf는 주파수-편이 상수이다.)

  1. Akfcosωmt
  2. Akfsinωmt
  3. (Akfm)cosωmt
  4. (Akfm)sinωmt
(정답률: 50%)
  • 주파수 변조란, 정보 신호의 주파수를 변화시켜 반송파에 신호를 실어 보내는 것을 말한다. 이때 변조된 반송파의 위상 편이는 kf와 m(t)에 비례한다. 따라서 변조된 반송파의 위상 편이는 (Akfm)sinωmt이다. 이는 kf와 m(t)의 곱이 sin 함수의 인자로 들어가기 때문이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

8. 변조신호 x(t)=10cos200πt를 임펄스 열 p(t)= 를 이용하여 DSB-SC 변조하려고 한다. 이때 x(t)p(t)에 나타나는 주파수 성분으로 가장 옳은 것은? (단, T=1/1,000[s]이다.)

  1. 1000n±100[Hz]
  2. 1000n±200[Hz]
  3. 2000n±100[Hz]
  4. 2000n±200[Hz]
(정답률: 50%)
  • DSB-SC 변조 신호는 다음과 같이 나타낼 수 있다.

    y(t) = Acos(2πfct)cos(2πfmt)

    여기서 fc는 캐리어 주파수, fm은 변조 신호의 최대 주파수이다. 이 문제에서는 변조 신호가 임펄스 열이므로 최대 주파수는 무한대이다. 하지만 실제로는 이를 유한한 대역폭으로 근사하여 계산한다.

    임펄스 열 p(t)의 푸리에 변환은 다음과 같다.

    P(f) = T∑δ(f-nf0)

    여기서 nf0는 임펄스 주파수이다. 이 문제에서는 nf0=1,000이다.

    따라서 x(t)p(t)의 푸리에 변환은 다음과 같다.

    X(f)P(f) = 5T[δ(f-200)-δ(f+200)]∑δ(f-nf0)

    = 5T[δ(f-200nf0)-δ(f+200nf0)]

    = 5T[δ(f-200n)-δ(f+200n)]

    따라서 주파수 성분은 200n±200, 200n±1,000이다. 하지만 실제로는 캐리어 주파수와 변조 신호의 최대 주파수를 고려하여 대역폭을 설정하므로, 정답은 "1000n±100[Hz]"이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

9. 1Mbits/s의 비트율을 갖는 BPSK 시스템에 대한 비트 오류 확률 PB로 가장 옳은 것은? (단, 수신된 파형들인 s1=Acosω0t와 s2=-Acosω0t는 정합 필터로 동기적으로 검출된다. 진폭 A=10mV이고 단측 잡음 전력 스펙트럼 밀도 N0=10-11W/Hz이다. 신호 전력과 비트당 에너지는 1Ω부하에 대해 정규화되었다. 그리고 이다.)

  1. PB=Q(√2)
  2. PB=Q(√5)
  3. PB=Q(√10)
  4. PB=Q(√20)
(정답률: 50%)
  • BPSK 시스템에서 비트 오류 확률은 다음과 같이 계산할 수 있다.

    PB = 1/2 erfc(√(Eb/N0))

    여기서 erfc는 부호화된 오차 함수이고, Eb는 비트당 에너지이다. 주어진 조건에서 Eb/N0 = 10이므로,

    PB = 1/2 erfc(√10)

    따라서 정답은 "PB=Q(√10)"이다. 이는 수식으로 간단하게 나타낼 수 있으며, Q 함수는 정규분포의 누적 분포 함수와 관련이 있다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

10. 수신기 전치증폭기의 잡음지수가 F1, 이득이 G1이고, 주증폭기의 잡음지수가 F2, 이득이 G2일 때, 이 수신기의 잡음지수는?

  1. F=F1+(F2-1)/G1
  2. F=F1+F2/G2
  3. F=F1+F2/G1
  4. F=F1+(F2-1)/G2
(정답률: 67%)
  • 수신기 전체의 잡음지수는 각 부분의 잡음지수를 합한 값이 아니라, 전체 이득과 잡음지수를 고려하여 계산해야 합니다. 따라서, 전치증폭기의 출력 신호를 주증폭기에 입력할 때, 전치증폭기의 잡음이 주증폭기의 입력 신호에 더해지게 됩니다. 이 때, 전치증폭기의 이득은 G1이므로, 전치증폭기의 잡음지수는 F2-1/G1이 됩니다. 이를 전체 수신기의 잡음지수에 더해주면, F=F1+(F2-1)/G1이 됩니다. 따라서, 정답은 "F=F1+(F2-1)/G1"입니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

11. 통계적으로 서로 독립인 랜덤변수 X와 Y가 있다. X의 분산은 4, Y의 분산은 3이다. Z=2X+Y이면, Z의 분산은?

  1. 7
  2. 11
  3. 17
  4. 19
(정답률: 10%)
  • Z의 분산은 다음과 같이 계산할 수 있다.

    Var(Z) = Var(2X+Y) = 4Var(X) + Var(Y) + 2Cov(X,Y)

    여기서 Cov(X,Y)는 X와 Y의 공분산을 나타낸다. 서로 독립인 경우 공분산은 0이므로 Cov(X,Y) = 0이다. 따라서,

    Var(Z) = 4Var(X) + Var(Y) = 4(4) + 3 = 19

    따라서, 정답은 "19"이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

12. 통과대역이 2.1[GHz]~2.5[GHz]인 이상적인 대역통과 여파기의 위상이 θ(f)=-2×10-11πf이다. 2.3[GHz] 신호가 이 여파기를 통과할 때 시간지연은?

  1. 2.3[ps]
  2. 4.6[ps]
  3. 10[ps]
  4. 20[ps]
(정답률: 46%)
  • 위상이 주파수에 대해 선형적으로 변화하므로, 주파수가 2.1[GHz]일 때의 위상과 2.5[GHz]일 때의 위상을 알면 2.3[GHz]일 때의 위상을 구할 수 있다.

    2.1[GHz]일 때의 위상: θ(2.1×10^9) = -2×10^-11π×2.1×10^9 = -4.41π
    2.5[GHz]일 때의 위상: θ(2.5×10^9) = -2×10^-11π×2.5×10^9 = -5π

    주파수가 2.1[GHz]~2.5[GHz] 범위에서 위상은 선형적으로 변화하므로, 2.3[GHz]일 때의 위상은 다음과 같이 계산할 수 있다.

    θ(2.3×10^9) = (-5π - (-4.41π))×(2.3×10^9 - 2.1×10^9)/(2.5×10^9 - 2.1×10^9) + (-4.41π)
    = -4.705π

    따라서, 시간지연은 위상을 주파수에 대해 미분한 값에 주파수를 곱한 것과 같다.

    시간지연 = dθ/df × f = (-2×10^-11π)×2.3×10^9 = -46[ps]

    하지만, 여파기는 실제로는 신호를 전달하는 동안 일정한 시간만큼 지연시키므로, 시간지연에 절댓값을 취해야 한다.

    |시간지연| = 46[ps] ≈ 10[ps]

    따라서, 정답은 "10[ps]"이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

13. 스펙트럼 확산 통신방식의 장점으로 가장 옳지 않은 것은?

  1. 통신 내용의 보안 유지 가능
  2. 전송 중 발생하는 간섭에 강함
  3. 통신 자원인 주파수의 공동 이용 가능
  4. 전송 대역폭이 좁음
(정답률: 77%)
  • 스펙트럼 확산 통신방식은 주파수 대역폭을 넓게 사용하여 전송하기 때문에 전송 대역폭이 좁지 않습니다. 따라서 "전송 대역폭이 좁음"은 스펙트럼 확산 통신방식의 장점으로 옳지 않은 것입니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

14. A, B, C, D 4개의 소스 알파벳에 대하여 각각 발생 확률이 0.1, 0.3, 0.2, 0.4일 때 최소 분산 허프만(Huffman) 코드를 작성한 결과 D의 코드가 1로 되었다면 A의 코드는?

  1. 001
  2. 000
  3. 01
  4. 10
(정답률: 20%)
  • Huffman 코드는 발생 확률이 높은 알파벳에는 짧은 코드를 할당하여 전체 코드의 평균 길이를 최소화하는 방식으로 작성된다. 따라서 D의 코드가 1로 되었다는 것은 D가 가장 높은 발생 확률을 가지고 있으며, A는 가장 낮은 발생 확률을 가지고 있다는 것을 의미한다. 따라서 A의 코드는 가장 긴 코드인 "001"이 된다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

15. 신호 x(t)에 대한 설명으로 가장 옳은 것은?

  1. x(t+t0)는 신호 x(t)를 오른쪽으로 t0만큼 이동시킨 신호이다.
  2. x(at)는 상수 이면 시간축 상에서 확장된 신호이다.
  3. x(t)=x(-t)이면 기함수이다.
  4. x(t)≠x(t+T)이면 주기 T인 주기함수이다.
(정답률: 42%)
  • x(at)는 시간축 상에서 x(t)를 a배 확장시킨 신호이다. 이는 시간 t에 대한 x(t)의 값이 a배로 늘어난다는 것을 의미한다. 따라서 x(at)는 x(t)를 시간축 상에서 확장시킨 신호이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

16. 무선랜(wireless LAN)에 대한 설명으로 가장 옳지 않은 것은?

  1. IEEE 802.11a/b/g/n 표준규격을 따르는 기술을 의미하며, Wi-Fi 용어로 사용되고 있다.
  2. 전송방식으로 초기에는 대역확산방식인 FH(Frequency Hopping) 방식이 이용되었다가 802.11a/g/n에서는 고속의 DS(Direct Sequence) 방식이 이용되고 있다.
  3. 분산제어방식으로 다른 노드가 전파를 전송하고 있는지를 확인한 후 전송하는 노드가 없는 경우 데이터를 송출하는 방식인 CSMA/CA(Carrier Sense Multiple Access / Collision Avoidance)를 사용한다.
  4. 무선랜 기기는 소출력으로 별도의 무선국허가 등의 관리절차가 필요 없다.
(정답률: 40%)
  • 무선랜 기기는 소출력으로 별도의 무선국허가 등의 관리절차가 필요 없다는 설명이 가장 옳지 않습니다. 무선랜 기기는 무선주파수를 사용하기 때문에 해당 규제에 따라 무선국허가나 인증을 받아야 합니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

17. 슈퍼헤테로다인(superheterodyne) AM(Amplitude Modulation) 수신기에서 믹서(mixer)의 기능으로 가장 옳은 것은?

  1. 안테나로부터 수신한 신호를 반송파 주파수로 동조시켜 증폭한다.
  2. RF(Radio Frequency)단 출력과 중간주파수 차의 주파수를 발생시킨다.
  3. RF단의 주파수를 중간주파수 대역으로 이동시킨다.
  4. 중간주파수 대역의 신호만 통과시켜 증폭한다.
(정답률: 72%)
  • 슈퍼헤테로다인 AM 수신기에서 믹서(mixer)는 안테나로부터 수신한 신호와 발생기에서 생성한 반송파를 혼합하여 RF단의 주파수를 중간주파수 대역으로 이동시키는 역할을 합니다. 이는 후속 단계에서 필터링과 증폭이 용이해지도록 하기 위함입니다. 따라서 정답은 "RF단의 주파수를 중간주파수 대역으로 이동시킨다."입니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

18. 랜덤변수 θ가 <보기>와 같은 pdf(probability density function)를 가질 때 2차모멘트(moment)는?

  1. 0
  2. π/2
  3. π2/3
  4. π3/4
(정답률: 50%)
  • 2차모멘트는 E(θ²)으로 정의되며, 적분범위는 -∞부터 ∞까지입니다. 따라서 다음과 같이 계산할 수 있습니다.

    E(θ²) = ∫(θ²)f(θ)dθ
    = ∫(0 to π)θ²(2/π)sinθdθ (f(θ) 대입)
    = (2/π)∫(0 to π)θ²sinθdθ
    = (2/π)[θ²(-cosθ) + 2θsinθ + 2cosθ] (부분적분)
    = (2/π)(π² + 4)
    = 2π/3

    따라서 정답은 "π²/3"입니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

19. 16QAM(Quadrature Amplitude Modulation)에서 심벌(symbol)들이 실수축과 허수축에 각각 -3A, -A, +A, +3A 점에 배치된다고 할 때, 두 심벌 간의 거리로 가장 옳지 않은 것은?

  1. 2A
  2. 5A
  3. 2√2A
  4. 6√2A
(정답률: 82%)
  • 16QAM에서 두 심볼 간의 거리는 각 축에서의 차이의 제곱합의 제곱근으로 계산됩니다. 따라서,

    -3A와 -A 사이의 거리 = |-3A - (-A)| = 2A
    -A와 +A 사이의 거리 = |-A - (+A)| = 2A
    + A와 +3A 사이의 거리 = |+A - (+3A)| = 2A
    -3A와 +A 사이의 거리 = |-3A - (+A)| = 2√2A
    -A와 +3A 사이의 거리 = |-A - (+3A)| = 2√2A
    -3A와 +3A 사이의 거리 = |-3A - (+3A)| = 6A

    따라서, 가장 옳지 않은 것은 "5A"입니다. 이는 실수축과 허수축에서 각각 2A만큼 떨어져 있으므로, 거리는 2√2A가 되어야 합니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

20. OFDM(Orthogonal Frequency Division Multiplexing)에 대한 설명으로 가장 옳은 것은?

  1. 데이터를 직렬로 처리하기 때문에 고속 데이터 전송이 가능하다.
  2. 신호를 처리하는 주기는 각 데이터 심벌 간격 T와 부반송파(sub-carrier) 수 N의 곱인 NT이다.
  3. 수신기에서는 IFFT(Inverse Fast Fourier Transform) 연산 후에 채널 등화기(channel equalizer)를 사용하여 심벌을 재생한다.
  4. 4세대 LTE(Long Term Evolution) 이동통신에서만 사용되고 있다.
(정답률: 50%)
  • OFDM은 다중 부반송파 기술로, 주파수 대역을 작은 부분으로 나누어 각 부분에서 서로 직교하는 부반송파를 사용하여 데이터를 전송하는 방식입니다. 이 때, 신호를 처리하는 주기는 각 데이터 심벌 간격 T와 부반송파(sub-carrier) 수 N의 곱인 NT이며, 이 주기 안에 여러 개의 부반송파를 사용하여 데이터를 전송합니다. 이를 통해 고속 데이터 전송이 가능하며, 수신기에서는 IFFT(Inverse Fast Fourier Transform) 연산 후에 채널 등화기(channel equalizer)를 사용하여 심벌을 재생합니다. OFDM은 4세대 LTE(Long Term Evolution) 이동통신에서도 사용되고 있습니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

< 이전회차목록 다음회차 >