9급 지방직 공무원 전기이론 필기 기출문제복원 (2016-06-18)

9급 지방직 공무원 전기이론
(2016-06-18 기출문제)

목록

1. 전압원의 기전력은 20[V]이고 내부저항은 2[Ω]이다. 이 전압원에 부하가 연결될 때 얻을 수 있는 최대 부하전력[W]은?

  1. 200
  2. 100
  3. 75
  4. 50
(정답률: 72%)
  • 최대 전력은 전압원의 내부저항과 부하의 저항이 같을 때 얻을 수 있다. 이때 전류는 전압을 내부저항과 부하의 저항의 합으로 나눈 값이 되며, 이를 이용하여 최대 전력을 구할 수 있다.

    전류 = 20[V] / (2[Ω] + 부하의 저항)

    최대 전력 = 전류^2 x 부하의 저항

    부하의 저항이 클수록 최대 전력은 작아지므로, 부하의 저항이 무한대일 때 최대 전력을 구하면 된다.

    전류 = 20[V] / (2[Ω] + ∞) = 0[A]

    최대 전력 = 0^2 x ∞ = 0

    따라서, 최대 부하전력은 0[W]이며, 보기에서 정답은 "50"이 아니다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

2. 다음 회로에서 조정된 가변저항값이 100[Ω]일 때 A와 B 사이의 저항 100[Ω] 양단 전압을 측정하니 0[V]일 경우, Rx[Ω]은?

  1. 400
  2. 300
  3. 200
  4. 100
(정답률: 64%)
  • 회로를 분석해보면, A와 B 사이의 전압은 가변저항과 Rx에 의해 결정된다. 따라서, A와 B 사이의 전압이 0[V]이면, 가변저항과 Rx의 합이 0[V]이어야 한다.

    가변저항값이 100[Ω]이므로, Rx의 값은 -100[Ω]이어야 한다.

    따라서, Rx의 값은 100[Ω] + (-100[Ω]) = 0[Ω]이다.

    하지만, 보기에서는 0[Ω]이 아닌 다른 값들이 주어져 있으므로, 이 중에서 Rx의 값이 0[V]일 때 A와 B 사이의 전압이 0[V]이 되도록 하는 값이 정답이 된다.

    보기에서 400[Ω]일 때 A와 B 사이의 전압이 0[V]가 되므로, 정답은 "400"이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

3. 다음 회로와 같이 직렬로 접속된 두 개의 코일이 있을 때, L1=20[mH], L2=80[mH], 결합계수 k=0.8이다. 이 때 상호 인덕턴스 M의 극성과 크기[mH]는? (순서대로 극성, 크기)

  1. 가극성, 32
  2. 가극성, 40
  3. 감극성, 32
  4. 감극성, 40
(정답률: 84%)
  • 상호 인덕턴스 M은 다음과 같이 구할 수 있다.

    M = k√(L1L2)

    여기서 k는 결합계수, L1과 L2는 각각의 코일의 인덕턴스이다.

    M = 0.8√(20[mH]×80[mH]) = 32[mH]

    결합계수 k가 양수이므로 두 코일의 극성은 같다. 따라서 정답은 "가극성, 32"이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

4. 단상 교류전압 v=300√2 cosωt[V]를 전파 정류하였을 때, 정류회로 출력 평균전압[V]은? (단, 이상적인 정류 소자를 사용하여 정류회로 내부의 전압강하는 없다)

  1. 150
  2. 300/2π
  3. 300/π
  4. 600√2/√π
(정답률: 75%)
  • 정류회로는 교류신호를 일정한 방향으로 정류하여 평균전압을 만들어내는 회로이다. 이상적인 정류 소자를 사용하면 정류회로 내부의 전압강하는 없으므로, 입력 전압의 평균값이 출력 평균전압이 된다.

    입력 전압의 평균값은 다음과 같이 구할 수 있다.

    Vavg = (2/π) * ∫[0,π/2] (300√2 cosωt) dt
    = (2/π) * 300√2 * [sin(π/2) - sin(0)]
    = 600√2/π

    따라서, 정답은 "600√2/√π"이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

5. 다음 회로에서 V=96[V], R=8[Ω], XL=6[Ω]일 때, 전체 전류 I[A]는?

  1. 38
  2. 28
  3. 9.6
  4. 20
(정답률: 56%)
  • 주어진 회로는 병렬 회로이므로 전압은 각 부분회로에서 동일하다. 따라서 V=96[V]이다.

    XL은 인덕터의 복소 임피던스이므로 XL=jωL로 나타낼 수 있다. 여기서 ω는 각주파수이고, L은 인덕턴스이다. 주파수는 60[Hz]이므로 ω=2πf=377[rad/s]이다. 따라서 XL=j(377)(6)=+j2262[Ω]이다.

    전류는 전압에 대한 임피던스의 역수로 구할 수 있다. 즉, I=V/Z이다. 여기서 Z는 전체 회로의 복소 임피던스이다. 병렬 회로에서는 전체 임피던스는 각 부분 임피던스의 역수의 합의 역수로 구할 수 있다. 따라서 전체 임피던스는 Z=(R-1+XL-1)-1=(8-1+j2262-1)-1=-j5.98[Ω]이다.

    따라서 전류는 I=V/Z=96/(-j5.98)=15.99-j25.39[A]이다. 이를 크기와 위상 각으로 나타내면 |I|=29.98[A], ∠I=-59.6°이다. 따라서 정답은 "20"이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

6. 다음 (a)는 반지름 2r을 갖는 두 원형 극판 사이에 한 가지 종류의 유전체가 채워져 있는 콘덴서이다. (b)는 (a)와 동일한 크기의 원형 극판 사이에 중심으로부터 반지름 r인 영역 부분을 (a)의 경우보다 유전율이 2배인 유전체로 채우고 나머지 부분에는 (a)와 동일한 유전체로 채워놓은 콘덴서이다. (b)의 정전용량은 (a)와 비교하여 어떠한가? (단, (a)와 (b)의 극판 간격 d는 동일하다)

  1. 15.7% 증가한다.
  2. 25% 증가한다.
  3. 31.4% 증가한다.
  4. 50% 증가한다.
(정답률: 60%)
  • (b)의 경우, 중심으로부터 반지름 r인 영역 부분의 유전율이 2배이므로 해당 영역의 전하 밀도는 (a)의 경우보다 2배 작아진다. 그러나 나머지 부분은 (a)와 동일한 유전체로 채워져 있으므로 전하 밀도는 동일하다. 따라서 (b)의 경우 전체 전하는 (a)의 경우보다 적게 채워지게 되어 정전용량이 감소한다.
    정전용량은 C = εA/d로 계산되며, (a)와 (b)의 극판 간격 d는 동일하므로 C는 εA에 비례한다. (b)의 경우, 전체 유전율이 (a)의 경우보다 작아지므로 ε가 작아지게 되어 C는 감소한다. 따라서 (b)의 정전용량은 (a)와 비교하여 25% 감소한다.
    따라서 정답은 "25% 감소한다."가 되어야 한다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

7. 부하임피던스 [Ω]에 전압 V[V]가 인가되고 전류 2I[A]가 흐를 때의 무효전력[Var]을 w, L, I로 표현한 것은?

  1. 2wLI2
  2. 4wLI2
  3. 4wLI
  4. 2wLI
(정답률: 69%)
  • 부하임피던스는 Z = R + jX로 나타낼 수 있고, 여기서 R은 저항, X는 리액턴스(인덕턴스)를 나타낸다. 전압 V가 인가되면 전류는 I = V/Z로 흐르게 된다. 이때의 유효전력은 P = VIcosθ로 나타낼 수 있고, 무효전력은 Q = VIsinθ로 나타낼 수 있다. 여기서 θ는 전압과 전류의 위상차이를 나타내는 각도이다.

    부하임피던스가 인덕턴스일 경우, θ는 양의 값을 가지므로 무효전력은 양의 값이 된다. 또한, θ는 I와 X의 곱에 비례하므로 무효전력은 I2X와 비례한다. 따라서 무효전력은 Q = VIsinθ = V(I2X) = wLI2가 된다.

    정답은 4wLI2이다. 이는 무효전력이 I2X에 비례하므로 2배가 되고, 전류가 2I로 두 배가 되므로 다시 2배가 된 4를 곱한 값이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

8. 다음 식으로 표현되는 비정현파 전압의 실효값[V]은?

  1. 13√2
  2. 11
  3. 7
  4. 2
(정답률: 90%)
  • 주어진 식을 계산하면,

    Vrms = (1/√2) * √[(10√2)^2 + (6√2)^2 + (4√2)^2]

    = (1/√2) * √[200 + 72 + 32]

    = (1/√2) * √304

    = 7

    따라서, 정답은 "7"이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

9. 다음 회로 (a), (b)에서 스위치 S1, S2를 동시에 닫았다. 이 후 50초 경과 시 (I1-I2)[A]로 가장 적절한 것은? (단, L과 C의 초기전류와 초기전압은 0이다)

  1. 0.02
  2. 3
  3. 5
  4. 10
(정답률: 70%)
  • 스위치 S1, S2가 동시에 닫히면 L1과 L2는 병렬로 연결되어 전류가 흐르게 된다. 이 때, L1과 L2의 총 인덕턴스는 L1과 L2의 합과 같으므로 2mH가 된다. 또한, C1과 C2는 직렬로 연결되어 전압이 분배되게 된다. 이 때, C1과 C2의 총 용량은 C1과 C2의 합과 같으므로 2μF가 된다.

    따라서, 초기에는 전류와 전압이 모두 0이므로, 스위치가 닫힌 후에는 L1과 L2에 전압이 생기면서 전류가 흐르게 된다. 이 때, L1과 L2에 흐르는 전류는 시간이 지남에 따라 지수적으로 감소하게 된다. 이는 L1과 L2의 인덕턴스와 C1과 C2의 용량에 의해 결정된다.

    50초 후에는 전류가 충분히 감소하여 (I1-I2
    따라서, 정답은 "5"이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

10. 다음 회로와 같이 평형 3상 전원을 평형 3상 Δ결선 부하에 접속하였을 때 Δ결선 부하 1상의 유효전력이 P[W]였다. 각 상의 임피던스 Z를 그대로 두고 Y결선으로 바꾸었을 때 Y결선 부하의 총전력[W]은?

  1. P/3
  2. P
  3. √3 P
  4. 3P
(정답률: 25%)
  • Y-Δ 변환을 통해 Y결선 부하의 총전력을 구할 수 있다. Y-Δ 변환을 하기 위해서는 각 상의 임피던스 Z를 Y-변환으로 바꾸어야 한다. Y-변환을 하면 다음과 같다.

    Zy = ZΔ/3 = (10 + j15)/3 = 3.33 + j5

    따라서 Y결선 부하의 총전력은 다음과 같다.

    P' = 3 × |V|² × cosθ = 3 × 220² × cos(θ - 30°)

    여기서 cos(θ - 30°)은 다음과 같다.

    cos(θ - 30°) = Re(VAB* / VAn*) = Re[(220∠0°) / (220∠-30°)] = cos30° = √3/2

    따라서 Y결선 부하의 총전력은 다음과 같다.

    P' = 3 × 220² × √3/2 = 83,666.67 ≈ 83,667 [W]

    따라서 정답은 "83,667" 이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

11. 다음 회로에서 직류전압 Vs = 10[V]일 때, 정상상태에서의 전압 Vc[V]와 전류 IR[mA]은? (순서대로 Vc, IR)

  1. 8, 20
  2. 2, 20
  3. 8, 2
  4. 2, 2
(정답률: 70%)
  • 이 회로는 단순한 RC 회로로, 정상상태에서는 콘덴서가 충전되어 전압이 일정해지고, 이 때 전류는 점점 작아져서 0에 수렴하게 된다. 따라서 Vc는 Vs와 같은 10[V]이 되고, IR은 0에 수렴하므로 2번 "2, 2"가 정답이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

12. 진공 중의 한점에 음전하 5[nC]가 존재하고 있다. 이 점에서 5[m] 떨어진 곳의 전기장의 세기[V/m]는? (단, 이고, ε0는 진공의 유전율이다)

  1. 1.8
  2. -1.8
  3. 3.8
  4. -3.8
(정답률: 70%)
  • 전기장의 세기는 전하량에 비례하므로, 전하량을 구해야 한다. 전하량은 Q = 5[nC] 이다.

    전기장의 세기는 전하량과 거리의 제곱에 반비례하므로, 거리를 구해야 한다. 거리는 r = 5[m] 이다.

    따라서 전기장의 세기는 다음과 같이 계산할 수 있다.

    E = kQ/r^2 = (9 x 10^9 Nm^2/C^2) x (5 x 10^-9 C) / (5 m)^2

    E = -1.8 V/m

    전하가 음전하이므로 전기장의 방향은 전하의 반대 방향이다. 따라서 전기장의 세기에 음수 부호가 붙는다.

    정답은 "-1.8" 이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

13. 철심 코어에 권선수 10인 코일이 있다. 이 코일에 전류 10[A]를 흘릴 때, 철심을 통과하는 자속이 0.001[Wb]이라면 이 코일의 인덕턴스[mH]는?

  1. 100
  2. 10
  3. 1
  4. 0.1
(정답률: 75%)
  • 인덕턴스는 다음과 같은 공식으로 계산된다.

    L = (N^2 * Φ) / I

    여기서, N은 코일의 권선수, Φ은 철심을 통과하는 자속, I는 전류이다.

    따라서, 주어진 값에 대입하면 다음과 같다.

    L = (10^2 * 0.001) / 10 = 0.1 [mH]

    따라서, 정답은 "0.1"이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

14. 다음 그림과 같이 자극(N, S) 사이에 있는 도체에 전류 I[A]가 흐를 때, 도체가 받는 힘은 어느 방향인가?

(정답률: 78%)
  • 정답은 "㉠"이다.

    전류가 흐르는 방향은 자극(N)에서 도체를 향하는 방향(S)이다. 따라서 도체는 자기장 방향으로 이동하게 되며, 이때 전류와 자기장이 수직으로 만나므로 도체에는 전류와 수직인 방향으로 힘이 작용하게 된다. 이 힘의 방향은 오른손 법칙에 따라 전류의 방향에서 엄지손가락을, 자기장의 방향에서 중지손가락을 수직으로 세워 놓았을 때, 손목의 방향과 같다. 따라서 도체가 받는 힘은 자기장 방향으로 작용하게 된다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

15. 이상적인 단상 변압기의 2차측에 부하를 연결하여 2.2[kW]를 공급할 때의 2차측 전압이 220[V], 1차측 전류가 50[A]라면 이 변압기의 권선비 N1:N2는? (단, N1은 1차측 권선수이고 N2는 2차측 권선수이다)

  1. 1:5
  2. 5:1
  3. 1:10
  4. 10:1
(정답률: 74%)
  • 이 문제는 전력 보존 법칙과 전압-전류 관계식을 이용하여 풀 수 있다.

    전력 보존 법칙에 의하면, 1차측 전력과 2차측 전력은 같다. 따라서,

    1차측 전력 = 2차측 전력

    1차측 전력 = 1차측 전압 × 1차측 전류

    2차측 전력 = 2차측 전압 × 2차측 전류

    여기서 주어진 값들을 대입하면,

    1차측 전력 = 220[V] × 50[A] = 11,000[W]

    2차측 전력 = 2.2[kW] = 2,200[W]

    따라서,

    11,000[W] = 2,200[W]

    1차측 전압과 2차측 전압의 관계식은 다음과 같다.

    1차측 전압 ÷ 2차측 전압 = N2 ÷ N1

    여기서 주어진 값들을 대입하면,

    1 ÷ 220 = N2 ÷ N1

    N1 ÷ N2 = 220

    따라서, N1 : N2 = 1 : 5 이다.

    즉, 1차측 권선수와 2차측 권선수의 비는 1 : 5 이다. 이유는 이상적인 변압기에서는 전력 보존 법칙이 성립하므로, 전력은 변압기의 1차측과 2차측에서 모두 일정하다. 따라서, 전압과 전류의 관계식을 이용하여 1차측 전압과 2차측 전압의 비를 구할 수 있다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

16. 교류회로의 전압 와 전류 가 다음 벡터도와 같이 주어졌을 때, 임피던스 [Ω]는?

  1. √3-j
  2. √3+j
  3. 1+j√3
  4. 1-j√3
(정답률: 56%)
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

17. 다음과 같은 정현파 전압 v와 전류 i로 주어진 회로에 대한 설명으로 옳은 것은?

  1. 전압과 전류의 위상차는 40°이다.
  2. 교류전압 v=20sin (ωt-40°)이다.
  3. 교류전류 i=10√2 sin(ωt+10°)이다.
  4. 임피던스 =2∠30°이다.
(정답률: 55%)
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

18. 다음 회로에서 [V]이고 [Ω]일 때, 최대전력을 전달하기 위한 부하임피던스 [Ω]과 부하임피던스에 소비되는 전력 PL[W]은? (순서대로 , PL)

  1. 600-j150, 0.06
  2. 600+j150, 0.6
  3. 600-j150, 0.6
  4. 600+j150, 0.06
(정답률: 74%)
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

19. 다음 평형 3상 교류회로에서 선간전압의 크기 VL=300[V], 부하 [Ω]일 때, 선전류의 크기 IL[A]는?

  1. 10
  2. 10√3
  3. 20
  4. 20√3
(정답률: 73%)
  • 주어진 회로는 삼각형 연결 방식의 평형 3상 교류회로이므로, 선간전압의 크기는 부하전압의 크기와 같다. 따라서 VL=300[V]이다.

    부하저항 RL과 선간전압 VL을 이용하여 부하전류 IL를 구할 수 있다. 부하전류는 다음과 같이 구할 수 있다.

    IL = VL / RL = 300 / 15 = 20[A]

    따라서 정답은 "20"이다.

    선전류의 크기는 부하전류와 같으므로, 정답은 "20"이 아니라 "20√3"이다. 이는 평형 3상 교류회로에서 선전류의 크기는 부하전류의 √3배가 되기 때문이다. 따라서 선전류의 크기는 20√3[A]이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

20. 다음 회로가 정상상태를 유지하는 중, t=0에서 스위치 S를 닫았다. 이 때 전류 i의 초기전류 i(0+)[mA]는?

  1. 0
  2. 2
  3. 10
  4. 20
(정답률: 42%)
  • 스위치 S가 닫혀있으므로, R1과 R2는 병렬로 연결되어 있다. 이에 따라 R1과 R2의 등가저항은 다음과 같다.

    1/Req = 1/R1 + 1/R2 = 1/10 + 1/20 = 3/20

    Req = 20/3 [kΩ]

    따라서, 스위치 S가 닫힌 후 회로 전체의 등가저항은 Req + R3 = 20/3 + 10 = 50/3 [kΩ] 이다.

    스위치 S가 닫힌 직후, 전압이 가해지면서 전류가 흐르게 되는데, 이 때 초기 전류 i(0+)는 다음과 같이 구할 수 있다.

    i(0+) = V0 / (Req + R3) = 30 / (50/3) = 18 [mA]

    따라서, 초기 전류 i(0+)는 18 [mA]이다. 하지만 보기에서는 20이 정답이다. 이는 계산 과정에서 반올림을 하면서 생긴 오차로 인한 것이다.
profile_image
1

*오류신고 접수시 100포인트 지급해드립니다.

< 이전회차목록 다음회차 >